Quantum cascade laser-based integrated cavity output spectroscopy of exhaled nitric oxide
نویسندگان
چکیده
A nitric oxide (NO) sensor employing a thermoelectrically cooled, continuous-wave, distributed feedback quantum cascade laser operating at 5.47 μm (1828 cm−1) and off-axis integrated cavity output spectroscopy was used to measure NO concentrations in exhaled breath. A minimum measurable concentration (3σ) of 3.6 parts-per-billion by volume (ppbv) of NO with a data-acquisition time of 4 s was demonstrated. Five prepared gas mixtures and 15 exhaled breath samples were measured with both the NO sensor and for intercomparison with a chemiluminescence-based NO analyzer and were found to be in agreement within 0.6 ppbv. Exhaled NO flow-independent parameters, which may provide diagnostic and therapeutic information in respiratory diseases where single-breath measurements are equivocal, were estimated from end-tidal NO concentration measurements collected at various flow rates. The results of this work indicate that a laser-based exhaled NO sensor can be used to measure exhaled nitric oxide at a range of exhalation flow rates to determine flow-independent parameters in human clinical trials. PACS 07.07.Df; 33.20.Ea; 42.62.Fi; 87.80.-y
منابع مشابه
Performance of an exhaled nitric oxide and carbon dioxide sensor using quantum cascade laser-based integrated cavity output spectroscopy.
Exhaled nitric oxide (NO) is an important biomarker in asthma and other respiratory disorders. The optical performance of a NOCO(2) sensor employing integrated cavity output spectroscopy (ICOS) with a quantum cascade laser operating at 5.22 microm capable of real-time NO and CO(2) measurements in a single breath cycle is reported. A NO noise-equivalent concentration of 0.4 ppb within a 1-sec in...
متن کاملMid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection.
Tunable-laser absorption spectroscopy in the mid-IR spectral region is a sensitive analytical technique for trace-gas quantification. The detection of nitric oxide (NO) in exhaled breath is of particular interest in the diagnosis of lower-airway inflammation associated with a number of lung diseases and illnesses. A gas analyzer based on a continuous-wave mid-IR quantum cascade laser operating ...
متن کاملSub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy
A nitric oxide (NO) gas sensor based on a thermoelectrically cooled, continuous-wave, distributed feedback quantum cascade laser operating at 5.45 μm (1835 cm−1) and off-axis integrated cavity output spectroscopy combined with a wavelength-modulation technique was developed to determine NO concentrations at the sub-ppbv levels that are essential for a number of applications, such as medical dia...
متن کاملSensitive detection of nitric oxide using a 5.26 μm external cavity quantum cascade laser based QEPAS sensor [8268-14]
The development and performance of a continuous wave (CW), thermoelectrically cooled (TEC) external cavity quantum cascade laser (EC-QCL) based sensor for quantitative measurements of nitric oxide (NO) concentrations in exhaled breath will be reported. Human breath contains ~ 400 different chemical species, usually at ultra low concentration levels, which can serve as biomarkers for the identif...
متن کاملSpectroscopic detection of biological NO with a quantum cascade laser.
Two configurations of a continuous wave quantum cascade distributed feedback laser-based gas sensor for the detection of NO at a parts per billion (ppb) concentration level, typical of biomedical applications, have been investigated. The laser was operated at liquid nitrogen temperature near lambda = 5.2 microns. In the first configuration, a 100 m optical path length multi-pass cell was employ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006